Part Number Hot Search : 
BDW94CFP TPAM15S CMHZ4695 MOLEX SR2A0 ICS511MI RE030005 HMC637
Product Description
Full Text Search
 

To Download MAX9981ETXD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  general description the max9981 dual high-linearity mixer integrates a local oscillator (lo) switch, lo buffer, lo splitter, and two active mixers. on-chip baluns allow for single-ended rf and lo inputs. the active mixers eliminate the need for an additional if amplifier because the mixer provides a typical overall conversion gain of 2.1db. the max9981 active mixers are optimized to meet the demanding requirements of gsm850, gsm900, and cdma850 base-station receivers. these mixers provide exceptional linearity with an input ip3 of greater than +27dbm. the integrated lo driver allows for a wide range of lo drive levels from -5dbm to +5dbm. in addi- tion, the built-in high-isolation switch enables rapid lo selection of less than 250ns, as needed for gsm trans- ceiver designs. the max9981 is available in a 36-pin qfn package (6mm ? 6mm) with an exposed paddle, and is specified over the -40? to +85? extended temperature range. applications gsm850/gsm900 2g and 2.5g edge base- station receivers cellular cdmaone and cdma2000 base- station receivers tdma and integrated digital enhanced network (iden) base-station receivers digital and spread-spectrum communication systems microwave point-to-point links features +27.3dbm input ip3 +13.6dbm input 1db compression point 825mhz to 915mhz rf frequency range 70mhz to 170mhz if frequency range 725mhz to 1085mhz lo frequency range 2.1db conversion gain 10.8db noise figure 42db channel-to-channel isolation -5dbm to +5dbm lo drive +5v single-supply operation built-in lo switch with 52db lo1 to lo2 isolation esd protection integrated rf and lo baluns for single-ended inputs max9981 825mhz to 915mhz, dual sige high-linearity active mixer ________________________________________________________________ maxim integrated products 1 ordering information 19-2588; rev 0; 9/02 for pricing, delivery, and ordering information, please contact maxim/dallas direct! at 1-888-629-4642, or visit maxim? website at www.maxim-ic.com. part temp range pin-package max9981egx-t -40 c to +85 c 36 qfn-ep* (6mm 6mm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 28 29 30 31 32 33 34 35 36 19 20 21 22 23 24 25 26 27 lo2 gnd gnd gnd mainbias divbias tapdiv tapmain rfmain rfdiv gnd gnd gnd gnd gnd v cc v cc gnd gnd v cc gnd gnd gnd ifdiv+ ifdiv- v cc ifmain+ ifmain- lo1 losel gnd gnd gnd gnd gnd v cc max9981 6mm x 6mm qfn-ep top view pin configuration/ functional diagram * ep = exposed paddle. cdmaone is a trademark of cdma development group. cdma2000 is a trademark of telecommunications industry association. iden is a trademark of motorola, inc.
max9981 825mhz to 915mhz, dual sige high-linearity active mixer 2 _______________________________________________________________________________________ absolute maximum ratings dc electrical characteristics ( typical application circuit , v cc = +4.75v to +5.25v, no rf signals applied, all rf inputs and outputs terminated with 50 ? , 267 ? resistors connected from mainbias and divbias to gnd, t a = -40 c to +85 c, unless otherwise noted. typical values are at v cc = +5.0v, t a = +25 c, unless otherwise noted.) stresses beyond those listed under ?bsolute maximum ratings?may cause permanent damage to the device. these are stress rating s only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specificatio ns is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. v cc ........................................................................-0.3v to +5.5v ifmain+, ifmain-, ifdiv+, ifdiv-, mainbias, divbias, losel..................-0.3v to (v cc + 0.3v) tapmain, tapdiv ..............................................................+5.5v mainbias, divbias current ................................................5ma rfmain, rfdiv, lo1, lo2 input power ........................+20dbm continuous power dissipation (t a = +70 c) 36-pin qfn (derate 33mw/ c above +70 c)..............2200mw operating temperature range ...........................-40 c to +85 c junction temperature ......................................................+150 c storage temperature range .............................-65 c to +150 c lead temperature (soldering, 10s) .................................+300 c parameter symbol conditions min typ max units supply voltage v cc 4.75 5.00 5.25 v supply current i cc 260 291 325 ma input high voltage v ih 3.5 v input low voltage v il 0.4 v losel input current i losel -5 +5 a ac electrical characteristics ( typical application circuit , v cc = +4.75v to +5.25v, p lo = -5dbm to +5dbm, f rf = 825mhz to 915mhz, f lo = 725mhz to 1085mhz, t a = -40 c to +85 c, unless otherwise noted. typical values are at v cc = +5.0v, p rf = -5dbm, p lo = 0dbm, f rf = 870mhz, f lo = 770mhz, t a = +25 c, unless otherwise noted.) (notes 1, 2) parameter symbol conditions min typ max units rf frequency f rf 825 915 mhz lo frequency f lo 725 1085 mhz if frequency f if must meet rf and lo frequency range. if matching components affect if frequency range. 70 170 mhz lo drive level p lo -5 +5 dbm cellular band, f rf = 825mhz to 850mhz 2.7 conversion gain (note 3) g c v cc = +5.0v, f if = 100mhz, low-side injection, p rf = 0dbm, p lo = -5dbm gsm band, f rf = 880mhz to 915mhz 2.1 db gain variation from nominal f rf = 825mhz to 915mhz, 3 0.6 db conversion loss from lo to if inject p in = -20dbm at f lo + 100mhz into lo port. measure 100mhz at if port as p out . no rf signal at rf port. 53 db cellular band, f rf = 825mhz to 850mhz 10.8 noise figure nf 100mhz if, low-side injection gsm band, f rf = 880mhz to 915mhz 11.9 db
max9981 825mhz to 915mhz, dual sige high-linearity active mixer _______________________________________________________________________________________ 3 note 1: guaranteed by design and characterization. note 2: all limits reflect losses of external components. output measurements taken at if out of typical application circuit . note 3: production tested. note 4: two tones at 1mhz spacing, -5dbm per tone at rf port. note 5: measured at if port at if frequency. f lo1 and f lo2 are offset by 1mhz. note 6: if return loss can be optimized by external matching components. ac electrical characteristics (continued) ( typical application circuit , v cc = +4.75v to +5.25v, p lo = -5dbm to +5dbm, f rf = 825mhz to 915mhz, f lo = 725mhz to 1085mhz, t a = -40 c to +85 c, unless otherwise noted. typical values are at v cc = +5.0v, p rf = -5dbm, p lo = 0dbm, f rf = 870mhz, f lo = 770mhz, t a = +25 c, unless otherwise noted.) (notes 1, 2) parameter symbol conditions min typ max units input 1db compression point p 1db low-side injection 13.6 dbm input third-order intercept point iip3 p lo = -5dbm to +5dbm (notes 3, 4) 27.3 dbm main 53.3 2 rf - 2 lo spur rejection 2 2 f rf = 915mhz, f lo = 815mhz, f spur = 865mhz, p rf = -5dbm diversity 43.2 dbc 3 rf - 3 lo spur rejection 3 3 f rf = 915mhz, f lo = 815mhz, f spur = 848.3mhz, p rf = -5dbm 79.7 dbc maximum lo leakage at rf port p lo = -5dbm to +5dbm, f lo = 725mhz to 1100mhz -42 dbm maximum lo leakage at if port p lo = -5dbm to +5dbm, f lo = 725mhz to 1100mhz -30.6 dbm minimum rf to if isolation p lo = -5dbm to +5dbm, f rf = 825mhz to 915mhz 18 db lo1 to lo2 isolation f rf = 825mhz to 915mhz, p lo1 = p lo2 = +5dbm, f if = 100mhz (note 5) 52 db p rfmain = -5dbm, rfdiv terminated with 50 ? . measured power at ifdiv relative to ifmain. 39.5 minimum channel isolation f rf = 825mhz to 915mhz, f lo = 725mhz to 1085mhz p rfdiv = -5dbm, rfmain terminated with 50 ? . measured power at ifmain relative to ifdiv. 42 dbc lo switching time 50% of losel to if settled within 2 250 ns rf return loss 25 db lo port selected 19 lo return loss lo port unselected 14.3 db if return loss rf and lo terminated into 50 ? , f if = 100mhz (note 6) 15 db
max9981 825mhz to 915mhz, dual sige high-linearity active mixer 4 _______________________________________________________________________________________ typical operating characteristics ( typical application circuit , v cc = 5.0v, p rf = -5dbm, p lo = 0dbm, t a = +25 c, unless otherwise noted.) conversion gain vs. rf frequency low-side injection max9981 toc01 rf frequency (mhz) conversion gain (db) 900 880 860 840 1 2 3 4 5 0 820 920 f if = 100mhz main mixer t a = -40 c t a = +85 c t a = +25 c conversion gain vs. rf frequency low-side injection max9981 toc02 rf frequency (mhz) conversion gain (db) 900 880 860 840 1 2 3 4 5 0 820 920 f if = 100mhz main mixer p lo = -5dbm, 0dbm, +5dbm conversion gain vs. rf frequency low-side injection max9981 toc03 rf frequency (mhz) conversion gain (db) 900 880 860 840 1 2 3 4 5 0 820 920 f if = 100mhz main mixer v cc = 4.75v, 5.0v, 5.25v conversion gain vs. rf frequency high-side injection max9981 toc04 rf frequency (mhz) conversion gain (db) 900 880 860 840 1 2 3 4 5 0 820 920 f if = 120mhz main mixer t a = -40 c t a = +85 c t a = +25 c conversion gain vs. rf frequency high-side injection max9981 toc05 rf frequency (mhz) conversion gain (db) 900 880 860 840 1 2 3 4 5 0 820 920 f if = 120mhz main mixer p lo = -5dbm, 0dbm, +5dbm conversion gain vs. rf frequency high-side injection max9981 toc06 rf frequency (mhz) conversion gain (db) 900 880 860 840 1 2 3 4 5 0 820 920 f if = 120mhz main mixer v cc = 4.75v, 5.0v, 5.25v 2 rf - 2 lo response vs. rf frequency low-side injection max9981 toc07 rf frequency (mhz) 2 rf - 2 lo response (dbc) 900 880 860 840 50 55 60 65 70 75 80 45 820 920 f if = 100mhz main mixer p rf = -5dbm t a = +85 c t a = +25 c t a = -40 c 2 rf - 2 lo response vs. rf frequency low-side injection max9981 toc08 rf frequency (mhz) 2 rf - 2 lo response (dbc) 900 880 860 840 55 65 75 85 45 820 920 p lo = -5dbm p lo = 0dbm p lo = +5dbm f if = 100mhz main mixer p rf = -5dbm 2 rf - 2 lo response vs. rf frequency low-side injection max9981 toc09 rf frequency (mhz) 2 rf - 2 lo response (dbc) 900 880 860 840 50 55 60 65 70 75 80 45 820 920 f if = 100mhz main mixer p rf = -5dbm v cc = 4.75v, 5.0v, 5.25v
max9981 825mhz to 915mhz, dual sige high-linearity active mixer _______________________________________________________________________________________ 5 2 rf - 2 lo response vs. rf frequency low-side injection max9981 toc10 rf frequency (mhz) 2 rf - 2 lo response (dbc) 900 880 860 840 45 50 55 60 40 820 920 f if = 100mhz diversity mixer p rf = -5dbm t a = +85 c t a = +25 c t a = -40 c 2 rf - 2 lo response vs. rf frequency low-side injection max9981 toc11 rf frequency (mhz) 2 rf - 2 lo response (dbc) 900 880 860 840 45 50 55 60 40 820 920 f if = 100mhz diversity mixer p rf = -5dbm p lo = +5dbm p lo = 0dbm p lo = -5dbm 2 rf - 2 lo response vs. rf frequency low-side injection max9981 toc12 rf frequency (mhz) 2 rf - 2 lo response (dbc) 900 880 860 840 45 50 55 60 40 820 920 f if = 100mhz diversity mixer p rf = -5dbm v cc = 4.75v, 5.0v, 5.25v 2 lo - 2 rf response vs. rf frequency high-side injection max9981 toc13 rf frequency (mhz) 2 lo - 2 rf response (dbc) 900 880 860 840 50 55 65 60 70 45 820 920 f if = 120mhz main mixer p rf = -5dbm t a = +85 c t a = +25 c t a = -40 c 2 lo - 2 rf response vs. rf frequency high-side injection max9981 toc14 rf frequency (mhz) 2 lo - 2 rf response (dbc) 900 880 860 840 52 54 58 56 60 50 820 920 f if = 120mhz main mixer p rf = -5dbm p lo = -5dbm p lo = +5dbm p lo = 0dbm 2 lo - 2 rf response vs. rf frequency high-side injection max9981 toc15 rf frequency (mhz) 2 lo - 2 rf response (dbc) 900 880 860 840 52 54 58 56 60 50 820 920 f if = 120mhz main mixer p rf = -5dbm v cc = 5.25v v cc = 4.75, 5.0v 2 lo - 2 rf response vs. rf frequency high-side injection max9981 toc16 rf frequency (mhz) 2 lo - 2 rf response (dbc) 900 880 860 840 41 42 43 46 45 44 47 40 820 920 f if = 120mhz diversity mixer p rf = -5dbm t a = +85 c t a = +25 c t a = -40 c 2 lo - 2 rf response vs. rf frequency high-side injection max9981 toc17 rf frequency (mhz) 2 lo - 2 rf response (dbc) 900 880 860 840 40.0 42.5 45.0 50.0 47.5 52.5 37.5 820 920 f if = 120mhz diversity mixer p rf = -5dbm p lo = +5dbm p lo = -5dbm p lo = 0dbm 2 lo - 2 rf response vs. rf frequency high-side injection max9981 toc18 rf frequency (mhz) 2 lo - 2 rf response (dbc) 900 880 860 840 43 44 45 46 42 820 920 f if = 120mhz diversity mixer p rf = -5dbm v cc = 5.25v v cc = 4.75v, 5.0v typical operating characteristics (continued) ( typical application circuit , v cc = 5.0v, p rf = -5dbm, p lo = 0dbm, t a = +25 c, unless otherwise noted.)
max9981 825mhz to 915mhz, dual sige high-linearity active mixer 6 _______________________________________________________________________________________ input ip3 vs. rf frequency low-side injection max9981 toc19 rf frequency (mhz) input ip3 (dbm) 900 880 860 840 26 27 28 29 30 25 820 920 f if = 100mhz main mixer t a = +85 c t a = -40 c t a = +25 c input ip3 vs. rf frequency low-side injection max9981 toc20 rf frequency (mhz) input ip3 (dbm) 900 880 860 840 26 27 28 29 30 25 820 920 f if = 100mhz main mixer p lo = +5dbm p lo = 0dbm p lo = -5dbm input ip3 vs. rf frequency low-side injection max9981 toc21 rf frequency (mhz) input ip3 (dbm) 900 880 860 840 26 27 28 29 30 25 820 920 f if = 100mhz main mixer v cc = 5.25v v cc = 4.75v v cc = 5.0v input ip3 vs. rf frequency high-side injection max9981 toc22 rf frequency (mhz) input ip3 (dbm) 900 880 860 840 26 27 28 29 30 25 820 920 f if = 120mhz main mixer t a = +85 c t a = -40 c t a = +25 c input ip3 vs. rf frequency high-side injection max9981 toc23 rf frequency (mhz) input ip3 (dbm) 900 880 860 840 26 27 28 29 30 25 820 920 f if = 120mhz main mixer p lo = +5dbm p lo = 0dbm p lo = -5dbm input ip3 vs. rf frequency high-side injection max9981 toc24 rf frequency (mhz) input ip3 (dbm) 900 880 860 840 26 27 28 29 30 25 820 920 f if = 120mhz main mixer v cc = 5.25v v cc = 4.75v v cc = 5.0v input p1db vs. rf frequency low-side injection max9981 toc25 rf frequency (mhz) input p1db (dbm) 900 880 860 840 13 14 15 16 17 12 820 920 f if = 100mhz main mixer t a = +85 c t a = -40 c t a = +25 c input p1db vs. rf frequency low-side injection max9981 toc26 rf frequency (mhz) input p1db (dbm) 900 880 860 840 13 14 15 16 17 12 820 920 f if = 100mhz main mixer p lo = +5dbm p lo = 0dbm p lo = -5dbm input p1db vs. rf frequency low-side injection max9981 toc27 rf frequency (mhz) input p1db (dbm) 900 880 860 840 13 14 15 16 17 12 820 920 f if = 100mhz main mixer v cc = 5.25v v cc = 4.75v v cc = 5.0v typical operating characteristics (continued) ( typical application circuit , v cc = 5.0v, p rf = -5dbm, p lo = 0dbm, t a = +25 c, unless otherwise noted.)
max9981 825mhz to 915mhz, dual sige high-linearity active mixer _______________________________________________________________________________________ 7 input p1db vs. rf frequency high-side injection max9981 toc28 rf frequency (mhz) input p1db (dbm) 900 880 860 840 13 14 15 16 17 12 820 920 f if = 120mhz main mixer t a = +85 c t a = -40 c t a = +25 c input p1db vs. rf frequency high-side injection max9981 toc29 rf frequency (mhz) input p1db (dbm) 900 880 860 840 13 14 15 16 17 12 820 920 f if = 120mhz main mixer p lo = +5dbm p lo = 0dbm p lo = -5dbm input p1db vs. rf frequency high-side injection max9981 toc30 rf frequency (mhz) input p1db (dbm) 900 880 860 840 13 14 15 16 17 12 820 920 f if = 120mhz main mixer v cc = 5.25v v cc = 4.75v v cc = 5.0v channel isolation vs. rf frequency low-side injection max9981 toc31 rf frequency (mhz) channel isolation (dbc) 900 880 860 840 40 45 50 55 35 820 920 rf main in/if diversity out f if = 100mhz t a = +85 c t a = +25 c t a = -40 c channel isolation vs. rf frequency low-side injection max9981 toc32 rf frequency (mhz) channel isolation (dbc) 900 880 860 840 40 45 50 55 35 820 920 rf main in/if diversity out f if = 100mhz p lo = -5dbm, 0dbm, +5dbm channel isolation vs. rf frequency low-side injection max9981 toc33 rf frequency (mhz) channel isolation (dbc) 900 880 860 840 40 45 50 55 35 820 920 rf diversity in/if main out f if = 100mhz p lo = -5dbm, 0dbm, +5dbm channel isolation vs. rf frequency high-side injection max9981 toc34 rf frequency (mhz) channel isolation (dbc) 900 880 860 840 40 45 50 55 35 820 920 rf main in/if diversity out f if = 120mhz t a = +85 c t a = +25 c t a = -40 c channel isolation vs. rf frequency high-side injection max9981 toc35 rf frequency (mhz) channel isolation (dbc) 900 880 860 840 40 45 50 55 35 820 920 rf main in/if diversity out f if = 120mhz p lo = -5dbm, 0dbm, +5dbm channel isolation vs. rf frequency high-side injection max9981 toc36 rf frequency (mhz) channel isolation (dbc) 900 880 860 840 40 45 50 55 35 820 920 rf diversity in/if main out f if = 120mhz p lo = -5dbm, 0dbm, +5dbm typical operating characteristics (continued) ( typical application circuit , v cc = 5.0v, p rf = -5dbm, p lo = 0dbm, t a = +25 c, unless otherwise noted.)
max9981 825mhz to 915mhz, dual sige high-linearity active mixer 8 _______________________________________________________________________________________ lo switch isolation vs. rf frequency low-side injection max9981 toc37 rf frequency (mhz) lo switch isolation (dbc) 900 880 860 840 52 53 54 55 56 51 820 920 lo offset 1mhz f if = 100mhz diversity mixer t a = +85 c t a = +25 c t a = +-40 c lo switch isolation vs. rf frequency low-side injection max9981 toc38 rf frequency (mhz) lo switch isolation (dbc) 900 880 860 840 52 53 54 55 56 51 820 920 lo offset 1mhz f if = 100mhz diversity mixer p lo = -5dbm p lo = 0dbm p lo = +5dbm lo switch isolation vs. rf frequency high-side injection max9981 toc39 rf frequency (mhz) lo switch isolation (dbc) 900 880 860 840 52 53 54 55 56 51 820 920 lo offset 1mhz f if = 120mhz main mixer t a = +85 c t a = +25 c t a = -40 c lo leakage at if port vs. lo frequency max9981 toc40 lo frequency (mhz) lo leakage (dbm) 950 900 850 800 -42 -39 -36 -33 -30 -45 750 1000 t a = +85 c t a = +25 c t a = -40 c main mixer lo leakage at if port vs. lo frequency max9981 toc41 lo frequency (mhz) lo leakage (dbm) 950 900 850 800 -42 -39 -36 -33 -30 -27 750 1000 main mixer p lo = +5dbm p lo = -5dbm p lo = 0dbm lo leakage at rf port vs. lo frequency max9981 toc42 lo frequency (mhz) lo leakage (dbm) 1000 900 800 -70 -65 -60 -55 -50 -45 -40 700 1100 main mixer p lo = +5dbm p lo = -5dbm p lo = 0dbm rf to if isolation vs. rf frequency max9981 toc43 rf frequency (mhz) rf to if isolation (db) 900 880 860 840 18 21 24 27 30 15 820 920 t a = +85 c t a = +25 c t a = -40 c main mixer rf to if isolation vs. rf frequency max9981 toc44 rf frequency (mhz) rf to if isolation (db) 900 880 860 840 20 22 24 26 18 820 920 main mixer p lo = -5dbm p lo = 0dbm, +5dbm noise figure vs. rf frequency low-side injection max9981 toc45 rf frequency (mhz) noise figure (db) 900 880 860 840 9 11 10 12 13 14 15 8 820 920 t a = -40 c t a = +25 c t a = +85 c f if = 100mhz main mixer typical operating characteristics (continued) ( typical application circuit , v cc = 5.0v, p rf = -5dbm, p lo = 0dbm, t a = +25 c, unless otherwise noted.)
max9981 825mhz to 915mhz, dual sige high-linearity active mixer _______________________________________________________________________________________ 9 rf return loss vs. rf frequency max9981 toc46 rf frequency (mhz) rf return loss (db) 1000 900 800 30 25 20 15 10 5 0 35 700 1100 main mixer p lo = -5dbm, 0dbm, +5dbm if return loss vs. if frequency max9981 toc47 if frequency (mhz) if return loss (db) 175 150 125 75 100 15 10 5 0 20 50 200 main mixer set by external matching lo return loss vs. lo frequency max9981 toc48 lo frequency (mhz) lo return loss (db) 1000 900 800 35 25 30 20 15 10 5 0 700 1100 p lo = +5dbm p lo = -5dbm p lo = 0dbm lo input selected lo return loss vs. lo frequency max9981 toc49 lo frequency (mhz) lo return loss (db) 1000 900 800 35 25 30 20 15 10 5 0 700 1100 lo input unselected p lo = -5dbm, 0dbm, +5dbm supply current vs. temperature max9981 toc50 temperature ( c) supply current (ma) 60 35 10 -15 270 280 290 300 310 320 260 -40 85 v cc = 5.25v v cc = 5.0v v cc = 4.75v typical operating characteristics (continued) ( typical application circuit , v cc = 5.0v, p rf = -5dbm, p lo = 0dbm, t a = +25 c, unless otherwise noted.)
max9981 825mhz to 915mhz, dual sige high-linearity active mixer 10 ______________________________________________________________________________________ pin description pin name function 1 rfmain main channel rf input. this input is internally matched to 50 ? and is dc shorted to ground through a balun. 2 tapmain main rf balun center tap. connect bypass capacitors from this pin to ground. 3 mainbias bias control for the main mixer. connect a 267 ? resistor from this pin to ground to set the bias current for the main mixer. 4, 5, 6, 11, 12, 15, 17, 18, 20, 22, 24, 25, 26, 28, 29, 31, 34, 35, ep gnd ground 7 divbias bias control for the diversity mixer. connect a 267 ? resistor from this pin to ground to set the bias current for the diversity mixer. 8 tapdiv diversity rf balun center tap. connect bypass capacitors from this pin to ground. 9 rfdiv diversity channel rf input. this input is internally matched to 50 ? and is dc shorted to ground through a balun. 10, 16, 21, 30, 36 v cc power-supply connections. connect bypass capacitors as shown in the typical application circuit . 13, 14 ifdiv+, ifdiv- differential if output for diversity mixer. connect 560nh pullup inductors and 137 ? pullup resistors from each of these pins to v cc for a 70mhz to 100mhz if range. 19 lo1 local oscillator input 1. this input is internally matched to 50 ? and is dc shorted to ground through a balun. 23 losel local oscillator select. set this pin to logic high to select lo1; set to logic low to select lo2. 27 lo2 local oscillator input 2. this input is internally matched to 50 ? and is dc shorted to ground through a balun. 32, 33 ifmain-, ifmain+ differential if output for the main mixer. connect 560nh pullup inductors and 137 ? pullup resistors from each of these pins to v cc for a 70mhz to 100mhz if range.
max9981 825mhz to 915mhz, dual sige high-linearity active mixer ______________________________________________________________________________________ 11 typical application circuit rf_main rf_div r1 r2 c2 c11 c12 c3 c1 c4 c6 c9 c17 l3 l4 r6 r5 c20 c18 c19 ifdiv_out t2 c10 c5 5.0v c13 l2 l1 r3 r4 c16 c15 c14 ifmain_out t1 c8 lo2 c7 lo1 4:1 (200:50) transformer 4:1 (200:50) transformer 3 2 1 4 6 3 2 1 4 6 5.0v 5.0v 5.0v 5.0v 5.0v 5.0v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 28 29 30 31 32 33 34 35 36 19 20 21 22 23 24 25 26 27 lo2 gnd gnd gnd mainbias divbias tapdiv tapmain rfmain rfdiv gnd gnd gnd gnd gnd v cc v cc gnd gnd v cc gnd gnd gnd ifdiv+ ifdiv- v cc ifmain+ ifmain- lo1 losel gnd gnd gnd gnd gnd v cc max9981 lo select
max9981 detailed description the max9981 downconverter mixers are designed for gsm and cdma base-station receivers with an rf fre- quency between 825mhz and 915mhz. each active mixer provides 2.1db to 2.7db of overall conversion gain to the receive signal, removing the need for an external if amplifier. the mixers have excellent input ip3 measuring greater than +27dbm. the device also features integrated rf and lo baluns that allow the mixers to be driven with single-ended signals. rf inputs the max9981 has two rf inputs (rfmain, rfdiv) that are internally matched to 50 ? requiring no external matching components. a 33pf dc-blocking capacitor is required at the input since the input is internally dc shorted to ground through a balun. return loss is better than 15db over the entire frequency range of 825mhz to 915mhz. lo inputs the mixers can be used for either high-side or low-side injection applications with an lo frequency range of 725mhz to 1085mhz. an internal lo switch allows for switching between two single-ended lo ports. this is useful for fast frequency changes/frequency hopping. lo switching time is less than 250ns. the switch is controlled by a digital input (losel) that when high, selects lo1 and when low, selects lo2. the selected lo input mixes with both rfmain and rfdiv to produce the if signals. internal lo buffers allow for a wide power range on the lo ports. the lo signal power can vary from -5dbm to +5dbm. lo1 and lo2 are internally matched to 50 ? , so only a 15pf dc-blocking capacitor is required at each lo port. if outputs each mixer has an if frequency range of 70mhz to 170mhz. the differential if output ports require exter- nal pullup inductors to v cc to resonate out the differen- tial on-chip capacitance of 1.8pf. see the typical application circuit for recommended component val- ues for an if of 70mhz to 100mhz. the if match can be optimized for higher if frequencies by reducing the values of the pullup inductors l1, l2, l3, and l4. note: removing the ground plane from underneath these inductors reduces parasitic capacitive loading and improves vswr. bias circuitry connect bias resistors from mainbias and divbias to ground to set the mixer bias current. a nominal resistor value of 267 ? sets an input ip3 of +27dbm and supply current of 290ma. bias currents are fine-tuned at the factory and should not be adjusted. applications information layout considerations a properly designed pc board is an essential part of any rf/microwave circuit. keep rf signal lines as short as possible to reduce losses, radiation, and induc- tance. for best performance, route the ground pin traces directly to the exposed paddle underneath the package. this paddle should be connected to the ground plane of the board by using multiple vias under the device to provide the best rf/thermal conduction path. solder the exposed paddle, on the bottom of the device package, to a pc board exposed pad. 825mhz to 915mhz, dual sige high-linearity active mixer 12 ______________________________________________________________________________________ component list component value size part number c1, c4 33pf 0603 murata grm1885c1h330j c2, c3 3.9pf 0603 murata grm1885c1h3r9c c5, c6, c9, c10 100pf 0603 murata grm1885c1h101j c7, c8 15pf 0603 murata grm1885c1h150j c11, c12 0.033f 0603 murata grm188r71e333k c13, c16, c17, c20 220pf 0603 murata grm1885c1h221j c14, c15, c18, c19 330pf 0603 murata grm1885c1h331j l1 l4 560nh 1008 coilcraft 1008cs-561xjbb r1, r2 267 ? 1% 0603 r3 r6 137 ? 1% 0603 t1, t2 4:1 (200:50) mini-circuits tc4-1w-7a
power supply bypassing proper voltage supply bypassing is essential for high-fre- quency circuit stability. bypass each v cc pin, tapmain, and tapdiv with the capacitors shown in the typical application circuit. place the tapmain and tapdiv bypass capacitors to ground within 100mils of the tapmain and tapdiv pins. chip information transistor count: 358 process: bicmos max9981 825mhz to 915mhz, dual sige high-linearity active mixer ______________________________________________________________________________________ 13
max9981 825mhz to 915mhz, dual sige high-linearity active mixer 14 ______________________________________________________________________________________ package information (the package drawing(s) in this data sheet may not reflect the most current specifications. for the latest package outline info rmation, go to www.maxim-ic.com/packages .) 36l,40l, qfn.eps
max9981 825mhz to 915mhz, dual sige high-linearity active mixer maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim product. no circu it patent licenses are implied. maxim reserves the right to change the circuitry and specifications without notice at any time. maxim integrated products, 120 san gabriel drive, sunnyvale, ca 94086 408-737-7600 ____________________ 15 ? 2002 maxim integrated products printed usa is a registered trademark of maxim integrated products. package information (continued) (the package drawing(s) in this data sheet may not reflect the most current specifications. for the latest package outline info rmation, go to www.maxim-ic.com/packages .)
e nglish ? ???? ? ??? ? ??? what's ne w p roducts solutions de sign ap p note s sup p ort buy comp any me mbe rs max9981 part number table notes: see the max9981 quickview data sheet for further information on this product family or download the max9981 full data sheet (pdf, 424kb). 1. other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales . 2. didn't find what you need? ask our applications engineers. expert assistance in finding parts, usually within one business day. 3. part number suffixes: t or t&r = tape and reel; + = rohs/lead-free; # = rohs/lead-exempt. more: see full data sheet or part naming c onventions . 4. * some packages have variations, listed on the drawing. "pkgc ode/variation" tells which variation the product uses. 5. part number free sample buy direct package: type pins size drawing code/var * temp rohs/lead-free? materials analysis max9981etx+td -40c to +85c rohs/lead-free: yes max9981etx+d -40c to +85c rohs/lead-free: yes max9981etx thin qfn;36 pin;6x6x0.8mm dwg: 21-0141h (pdf) use pkgcode/variation: t3666-2 * -40c to +85c rohs/lead-free: no materials analysis max9981etx-t -40c to +85c rohs/lead-free: no max9981etx+ thin qfn;36 pin;6x6x0.8mm dwg: 21-0141h (pdf) use pkgcode/variation: t3666+2 * -40c to +85c rohs/lead-free: yes materials analysis max9981etx+t -40c to +85c rohs/lead-free: yes didn't find what you need?
c ontac t us: send us an email c opyright 2 0 0 7 by m axim i ntegrated p roduc ts , dallas semic onduc tor ? legal n otic es ? p rivac y p olic y


▲Up To Search▲   

 
Price & Availability of MAX9981ETXD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X